Math 254-1 Exam 11 Solutions

1. Carefully define the term "basis". Give two examples in \mathbb{R}^{2}.

A basis is a set of vectors that is both independent and spanning. Equivalently, it is a set of vectors that is maximal and independent. Equivalently, it is a set of vectors that is minimal and spanning. Examples in \mathbb{R}^{2} include $\{(1,0),(0,1)\}$ and $\{(1,0),(1,1)\}$.

For the remaining problems, consider the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2\end{array}\right)$.
Hint: all solutions can be expressed with integers.
2. Calculate the characteristic polynomial $\Delta(t)($ or $p(\lambda))$ for A.

$$
\begin{aligned}
& p(\lambda)=|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-2 & 1 & -1 \\
0 & \lambda-3 & 0 \\
-1 & 0 & \lambda-2
\end{array}\right|=(\lambda-3)(-1)^{2+2}\left|\begin{array}{cc}
\lambda-2 & -1 \\
-1 & \lambda-2
\end{array}\right|=(\lambda-3)((\lambda- \\
& \left.2)^{2}-1\right)=(\lambda-3)\left(4-4 \lambda+\lambda^{2}-1\right)=(\lambda-3)\left(\lambda^{2}-4 \lambda+3\right)=(\lambda-3)(\lambda-3)(\lambda-1)= \\
& \lambda^{3}-7 \lambda^{2}+15 \lambda-9 .
\end{aligned}
$$

3. Find all the eigenvalues of A.

We solve $0=p(\lambda)=(\lambda-3)^{2}(\lambda-1)$. It has two solutions: $\lambda=1$ and $\lambda=3$ (a double root). Hence 1,3 are the eigenvalues of A.
4. For each eigenvalue, find a maximal independent set of eigenvectors.

For $\lambda=1, A-\lambda I=\left(\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right)$. This has row canonical form $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. Since there are two pivots, the rank is two and the nullity is one; hence the eigenspace is one-dimensional. If $(x, y, z)^{T}$ is in the nullspace, then $x+z=0, y=0$. Hence a basis for the eigenspace is $(1,0,-1)^{T}$.

For $\lambda=3, A-\lambda I=\left(\begin{array}{ccc}-1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1\end{array}\right)$. This has row canonical form $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. Since there are two pivots, the rank is two and the nullity is one; hence the eigenspace is one-dimensional. If $(x, y, z)^{T}$ is in the nullspace, then $x-z=$ $0, y=0$. Hence a basis for the eigenspace is $(1,0,1)^{T}$.
5. For each eigenvalue, give its algebraic and geometric multiplicity. Is A diagonalizable? What is the Jordan form of A ?
$\lambda=1$ is a single root, hence its algebraic multiplicity (and thus geometric multiplicity) is $1 . \lambda=3$ is a double root, hence its algebraic multiplicity is 2 . However, its geometric multiplicity is 1 , as calculated in the previous problem. Hence A is not diagonalizable, and it has Jordan form $\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)$ or $\left(\begin{array}{llll}1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right)$.

